Math 270 Day 7 Part 2

Chapter 3: Applications of Linear Differential Equations

Section 3.2: Compartmental Analysis



Section 3.2: Compartmental Analysis

What we’ll go over in this section

«  What is Compartmental Analysis?
e  Mixing Problems

«  Population Models

« Radioactive Decay
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What is Compartmental Analysis?

« Many applications of differential equations involve something going in and coming out of a container
« They call the container a compartment

« Sometimes there is more than 1 compartment

« The differential equation that models a one-compartment problem is. ..

d . ;
d—’: = input rate — output rate discuss

« All problems in this section are one-compartment problems
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Mixing Problems

t = time
x(t) = amount of substance in a tank at time t

DE: %:rate In - rate out
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Mixing Problems

Example 1 Consider a large tank holding 1000 L of pure water into which a brine solution of salt begins
to flow at a constant rate of 6 L/min. The solution inside the tank is kept well stirred and is
flowing out of the tank at a rate of 6 L/min. If the concentration of salt in the brine entering the
tank is 0.1 kg/L, determine when the concentration of salt in the tank will reach 0.05 kg/L.
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Mixing Problems

Example 2 For the mixing problem described in Example 1, assume now that the brine leaves the tank at a rate of 5 L/min instead
of 6 L/min, with all else being the same. Determine the concentration of salt in the tank as a function of time.
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Population Models: Malthusian/Exponential Law for Population Growth

t =time
p(t) = population at time t

Assumptions:

1) Unlimited resources (food, land, etc.)

2) Death only due to natural causes

3) Birth rate and death rate proportional to the current population

Malthusian/Exponential Law for Population Growth

I\VP: %= kp , p(0) = p, , where k isaconstant (discuss)
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Population Models: Malthusian/Exponential Law for Population Growth

Solve the Malthusian/Exponential Law for Population Growth

IVP: %= kp , p(0) = p, , where k isa constant

Solution: p(t) = pye™t
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Population Models: Malthusian/Exponential Law for Population Growth

Example 3 In 1790 the population of the United States was 3.93 million, and in 1890 it was 62.98 million.
Using the Malthusian model, estimate the U.S. population as a function of time.
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PODUIatlon MOdeIS s RSB B A Comparison of the Malthusian and Logistic Models with U.S. Census
Data (Population is given in Millions)

Malthusian Logistic 1 dp Logistic
Year U.S. Census (Example 3) (Example 4) ; dt (Least Squares)
1790 3.93 3.93 3.93 411
1800 5.31 5.19 5.30 0.0312 542
1810 7.24 6.84 13 0.0299 7.14
1820 9.64 9.03 9.58 0.0292 9.39
1830 12.87 11.92 12.82 0.0289 12.33
1840 17.07 15.73 17.07 0.0302 16.14
1850 2319 20.76 22.60 0.0310 21.05
1860 31.44 27.40 29.70 0.0265 27.33
1870 39.82 36.16 38.66 0.0235 35.28
1880 50.19 47.72 49.71 0.0231 45.21
1890 62.98 62.98 62.98 0.0207 57.41
1900 76.21 83.12 78.42 0.0192 1211
1910 92.23 109.69 95.73 0.0162 89.37
1920 106.02 144.76 114.34 0.0146 109.10
1930 123.20 191.05 133.48 0.0106 130.92
1940 132.16 252.13 152.26 0.0106 154.20
1950 151.33 333.74 169.90 0.0156 178.12
1960 179.32 439.12 185.76 0.0145 201.75
1970 203.30 579.52 199.50 0.0116 224 .21
1980 226.54 764.80 211.00 0.0100 244.79
1990 248.71 1009.33 220.38 0.0110 263.01
2000 281.42 1332.03 227.84 0.0107 278.68
2010 308.75 1757.91 233.68 291.80
2020 ? 2319.95 238.17 302.56
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Population Models: Logistic Model

t =time
p(t) = population at time t

Assumptions:

1) Unlimited resources (food, land, etc.)

2) Deaths natural causes and premature deaths from malnutrition, inadequate medical supplies, communicable
diseases, violent crimes, etc.

3) Birth rate and death rate proportional to the current population

4) Death rate from natural causes proportional to the current population

5) Death rate from other causes of death proportional to number of 2-party interactions p(p=1)

Loqgistic Model for Population Growth

I\VP: % = —Ap(p — p1) , p(0) =p, , where A and p, are constants  (discuss)
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Population Models: Logistic Model

Solve the Logistic Model for Population Growth

IVP: % = —Ap(p —py) , p(0) =p, , where A and p, are constants

PoP1
po+(p1—po)e4pP1t

Solution: p(t) =
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Population Models: Logistic Model

DPoDP1
Po+(p1—pole 4P1t

Solution: p(t) =

P P

Wi

Y

@) 0<po<py ®) po>p,
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Population Models: Logistic Model

Example 4 Taking the 1790 population of 3.93 million as the initial population and given the 1840 and
1890 populations of 17.07 and 62.98 million, respectively, use the logistic model to estimate
the population at time .



Section 3.2: Compartmental Analysis

Radioactive Decay

t =time
x(t) = amount (mass or weight) of radioactive material remaining at time ¢t

I\VP: %: kp , p(0) = p, , where k isaconstant (discuss)

Solution: p(t) = pye™t
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Radioactive Decay

Ex 5: A radioactive substance has a half-life of 7 years. If initially there are 300g of a radioactive substance,...
a) Find a formula for the amount of the radioactive substance remaining after t years

b) How much of the radioactive substance will remain after 12 years?

c) When will only 10g of the radioactive substance remain?
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